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Abstract

We present a prototyping environment with special benefit

Jor hardware/software codesign which we use as target ar-
chitecture in the COBRA project. This architecture is very
flexible, easy extensible, and provides a high gate comple-
xity. It supports standard processor integration as well as
processor emulation.

1: Introduction
1.1: Prototyping in system design

In ASIC design since a long time there are many efforts
to shorten the development process. In recent time, since
programmable logic devices are known, these efforts
include fast prototyping of ASIC’s. Prototyping environ-
ments provide the possibility, to compile a specification
very fast into an arrangement of programmable logic
devices, to test it under realtime conditions in its real
world environment, and to turn back to the specification
for error correction. The result is a more reliable ASIC
design in a shorter time.

The same evolution takes place in the domain of
embedded system design. This domain includes the ASIC
design as one part. Up to now an embedded system is
specified in a non formal language. Then the designer
decides in a heuristic way, what to implement in software
or in hardware. Software and hardware design and synthe-
sis are done independently. Weeks later, when the hard-
ware is finished, the components are integrated and
hopefully work together. Hardware/software codesign
wants to integrate the hardware and the software synthesis
in order to make the integration of the different parts eas-
ier. Our prototyping environment helps to shorten the syn-

1. This project is sponsored by the European community under ESPRIT
No. 8135

0-8186-6315-4/94 $04.00 © 1994 IEEE

10

thesis process of an embedded system. Together with
hardware/software codesign we get a more reliable design
and a faster design cycle.

1.2: Scope of the COBRA project

The name COBRA is an acronym for COdesign Basic
Research Action. This project is located in the domain of
hardware/software codesign. It aims at the improvement
of the knowledge in this domain. Therefore the main aims
of this project are:

* Raising the design level of heterogeneous systems by
raising the specification level from which the designer
starts towards higher abstraction.

* The development of methods for the different design
steps in the design of embedded systems, for the hardware/
software partitioning, the synthesis of hardware and soft-
ware parts, and the verification of a system level descrip-
tion.

* The develpment of a general design flow for hard-
ware/software codesign.

* The modeling of the design flow with a framework
environment and the integration of all COBRA tools into
the framework.

The different objectives are depicted in figure 1. For the
specification of a heterogeneous system three languages
are considered:

e SA/VHDL, which is a combination of structured anal-
ysis (known from software engineering) and VHDL.

* UNITY and ST (synchronized transitions). Both are
very similar and descibe a system as a set of concurrent
assignments (or transitions).

* LOTOS, a language which allows to describe a sys-
tem as a set of communicating processes. This language
was developed for the specification of communication pro-
tocols.
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Figure 1: Structure of the COBRA project [1]

Unlike the existing hardware/software codesign
approaches in this project a very flexible generic target
architecture model is used. This model is described by
several parameters and supports the partitioning process
with cost functions for hardware, software and communi-
cation.

The hardware/software partitioning uses the specifica-
tion to extract data dependencies and to define coproces-
sors for the application. The partitioning process is guided
by the cost functions which are provided by the generic
target architecture. Several distinct partitioning techniques
exist and most of them are considered in COBRA:

s Partitioning by clustering: This approach defines a
distance measure between UNITY elements and builts a
clustering tree upon this distance measure. The cost func-
tions are used to find a cut line in the clustering tree. The
resulting clusters are assigned to hardware or software.[2]

« Partitioning by framework support: The partitioning is
done manually but guided by framework assistance to ena-
ble an improved analysis and verification facility. The
designer selects a partition and if it is found not to be satis-
factory after analysis, a further partitition can be analyzed.
In this way consecutive versions are obtained that are
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increasingly better. The total process is guided by a frame-
work.[3]

+ Co-synthesis for embedded heterogeneous multiproc-
essors: This method starts from the existing cosynthesis
system COSYMA. The whole system is mapped to a sin-
gle processor (software) and then hardware extraction is
done to identify parts of the system to be partitioned to
other processors or hardwired synthesized coprocessors.

[4]

Verification aims at checking properties, e.g. function-
ality, timing, and resource requirements of a design prior
to the realization. It is highly desirable to base as much as
possible of the verification on high-level abstract descrip-
tions. Three verification methods are taken into account in
COBRA: Analysis goes down several steps in the design
process and test with simulation there, whether the system
meels its requirements or not. Simulation transforms the
system level specification into a simulation model and
stimulates this model. At the outputs of the model the
designer can see if the system works correct. Both, analy-
sis and simulation can only give an indication for the cor-
rectness of a system. A proof can be obtained by formal
verification. This is done by mechanical verification tools.



The synthesis of the hardware and software parts is
based on a model of the target architecture as well as on
the output of the partitioning process. A very important
point is given by the communication needs between the
different parts. A communication model for the target
architecture is needed.

1.3: Other approaches

Many different approaches for prototyping architec-
tures exist. Most of them address the prototyping of hard-
ware, not of embedded systems. Even if their gate
complexity is sufficient for total systems, they have sev-
eral disadvantages with respect to hardware/software
codesign and prototyping of whole systems. First, until
now there is no integration of microprocessors for the exe-
cution of the software parts supported. At least for the
InCA system there is some work underway to integrate
DSPs on daughterboards [5]. But for prototyping in hard-
ware/software codesign the integration facilities are still
not flexible enough and the interconnection scheme of
InCA (and the others) makes it very difficult for the syn-
thesis software to route buses which are usually introduced
by the integration of microprocessors. Second the parti-
tioning of the hardware parts isn’t done efficient enough.
The capacities of an architecture must be utilized in a bet-
ter way. Third, the debugging facilities are not sufficient.

General purpose environments: The most important
general purpose prototyping environments come from
three companies. To each architecture a brief description
is. They all have in common, that the interconnection is
programmable and totally separated from the programma-
ble logic. Most of them are extensible and allow the inte-
gration of application specific components.[6, 7]

» The Aptix company provides boards with up to 16
4010 Xilinx FPGAs for the configurable logic. The inter-
connection is done by a programmable interconnection
chip which has 1024 pins and provides the ability to con-
nect each pin with each other pin. The maximal usable
number of gates is about 30K and the system can operate
at frequencies up to 25 MHz. For debugging one has the
possibilty to read out each pin of the interconnection chip.
There is no chance to look into the configuration of the
FPGAs.

* InCA uses Xilinx FPGAs for the programmable inter-
connection. The configurable logic is also located on Xil-
inx FPGAs and has a maximal size of 120K gates. The
clockrate is maximal 15 MHz. The system can apply static
test vectores and it provides the observation of probe
points.
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* Quickturn offers two different prototyping environ-
ments, the MarslII system and the Enterprise system. Both
provide a higher gate complexity than the other
approaches. In both cases it is possible to combine several
systems to a bigger system. The maximal complexity
which can be achieved in this way is about 8M gates. Both
use a programmable interconnection scheme and can be
clocked with about 8 MHz. The Marslll system has a
probe capacity of 1024 channels and allows the observa-
tion of the internal shadow registers of the FPGAs.

Special purpose environments: Special purpose envi-
ronments usually use a hardwired interconnection scheme
and use the programmable logic devices for routing and
logic. These systems are designed to implement hardware
algorithms in a flexible way. They are not intended for the
implementation of general purpose hardware but for the
implementation of special things, i.e. coprocessors. Most
of them include an amount of RAM and an interface to a
host (VME, ISA, Sun SBus, etc.)

None of these environments is extensible or allows the
integration of standard components. Especially for proto-
typing in the domain of hardware/software codesign the
integration support of standard processors is missing. The
most important examples are the PAM of the Research
Laboratory of DEC, the SPLASH 2 of the IDA Supercom-
puting Research Center and the Virtual Computer of the
Virtual Computer Corporation. [8, 9, 10]

1.4: Preliminary activities

At the University of Tiibingen a FPGA based prototyp-
ing board called SPARROW is used [11]. This Board con-
sists of:

* a 3195 Xilinx FPGA. This devices carries the config-
urable logic.

* 64 KRAM.

* 4 expansion slots for application specific expansions.

« standard interfaces like a centronics port, a DMA port,
two serial ports and Xilinx programming and readback
ports.

SPARROW is used for processor design and fast proto-
typing starting from VHDL descriptions. Thus it is a sin-
gle board computer with a configurable microprocessor. It
belongs to the group of special purpose prototyping envi-
ronments. It is hardwired and not extensible in the sense of



prototyping applications with a higher gate complexity
than that provided by the Xilinx 3195 FPGA.

LDA case SPARROW
STA when ADD =>

ADD . .
IMP i - - - Simulation
NOP when JMP => model

T

Behavioral
Simulation
CALLAS Logic
High Level )
Synthesis Synthesis

Figure 2: SPARROW design flow

The software environment of SPARROW includes a
simulator model and a debugger. These tools allow to sim-
ulate an application before it is implemented on the SPAR-
ROW board. Also a configurable assembler and a simple
multitasking kernel exist. The assembler can be configured
for the particular processor which is located on the Xilinx
chip

Figure 2 shows a part of the design flow with SPAR-
ROW. A processor description is given, which describes
the instruction set of the processor. The designer has to
transform this description into a behavioral VHDL
description. This VHDL code is used together with the
simulation model for a behavioral simulation. It is also the
input of the CALLAS high level synthesis tool, which
results in a register transfer level netlist. The RT netlist is
compiled into the Xilinx chip via logic synthesis and tech-
nology mapping.

The design flow for the software part is as follows: The
configurable assembler is configured for the particular
processor, based on the VHDL description. Then the mul-
titasking kernel is assembled by this assembler. All this is
done on the host (a SPARCstation) with cross develop-
ment tools.

The SPARROW has several properties which are
important for a prototyping environment in the domain of
hardware/software codesign. First, the configurable logic
is used to implement processors. In that way it is possible
to design a processor with an optimized instruction set for
the application. This is very useful within hardware/soft-
ware codesign, because in that way the processor can be
designed in depencency of the software parts of the appli-
cation. Second, it provides many standard components and
expansion slots, which is necessary for prototyping arbi-
trary applications.

Although it has some interesting concepts, the SPAR-
ROW is not suitable for the COBRA project. The gate
complexity which it provides is not sufficient for the
design of entire embedded systems. The expansion capab-
lilities are not suffient and not flexible enough.
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2: Requirements on a Prototyping Environ-
ment

A prototyping system for hardware/software codesign
must fulfill many requirements which exceed the normal
requirements for a conventional prototyping system.

« It must be powerful and highly flexible. Otherwise it
would imply constraints for the applications that it can
carry. Only with a very flexible, extensible system it is
possible to prototype arbitrary applications.

» It must provide a high gate complexity because the
applications that are prototyped are entire embedded sys-
tems which would exceed the gate complexity of most of
the conventional prototyping environments.

« It must be able to run as a stand alone system. If it car-
ries an application, the possiblity is needed to test the
application in its real world environment.

* It must be open for the integration of standard and
application specific hardware components. It is not enough
to provide interfaces. The supporting software must be
able to include such extensions in the synthesis process.

« Arbitrary hardware debugging features are required.
These include the ability to trace every signal and to read
out the shadow registers of the FPGAs while the system is
running in real time. One must be able to readback the
configuration data of the FPGAs for analysis purpose.

« The prototyping system must be suitable for arbitrary
logic applications and especially for processor design as a
part of an embedded system. Processor design requires
mainly software capabilities, but it needs also sufficient
gate complexity.

« It must be possible to test an application which is pro-
totyped in its real world environment. Therefore the proto-
typing system must provide a sufficient clock rate. The
clock rate must at least be in the range of a few Megahertz.

Up to now no prototyping environment fulfills all these
requirements. Although InCA and Quickturn provide
enough gate complexity they do not really support the
integration of application specific components or proces-
sor design as a part of the prototyped system. The special
purpose environments are not flexible enough and do not
provide enough gate capacity.

3: The COBRA Environment

The COBRA prototyping environment is designed
especially for prototyping in the domain of hardware/soft-
ware codesign. It is a modular and extensible system with
high gate complexity. Because it fulfills the requirments
on a conventional prototyping system it is also useful for



hardware prototyping. The following contains a descrip-
tion of the hardware parts and the supporting software for
this environment.

It uses a hardwired regular interconnection scheme. In
that way less signals have to be routed through program-
mable devices, which results in a better performance. Nev-
ertheless it will not always be possible to avoid routing of
signal through the FPGAs. This must be minimized by the
supporting software. For the interconnection of modules
bus modules are provided. These offer 90 bit wide datap-
aths. This is enough even if 32 bit processors are inte-
grated. Depending on the type of Xilinx FPGAs used, it
provides 20K to 100K gates per board. Application spe-
cific components and standard processors can be inte-
grated via their own boards which must have the same
interface as the other modules.

For debugging it is possible to trace all signals at runt-
ime, to read the shadow registers of the FPGAs and to
readback the configuration data of any FPGA in the sys-
tem.

A very interesting feature is the possibility to reconfig-
ure particular FPGAs at the runtime of the system, without
affecting the other parts of the architecture. Although this
does not directly refer to prototyping, several publications
in recent time have shown, that there is an interest in the
domain of hardware reconfiguration at runtime. [12, 13,
14]

3.1: Hardware modules
The base module of the COBRA environment carries

four Xilinx FPGAs for the configurable logic. On each
side of the quadratic base module a connector with 90 pins
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is located. Each FPGA is connected with one of these con-
nectors. Also every FPGA has a 75 bit link to two of its
neighbors. A Control Unit is located on the base module.
It does the programming and readback of the particular
FPGAs. A separat bus comes to the control unit of each
base module in the system. The programming data comes
via that bus serially. This data is associated with address
information for the base module and the FPGA on the base
module. In that way the control unit can find out, if the
programming data on the bus is relevant for its own base
module and if so, it can forward the programming data to
the FPGA for which it is intended. The readback of config-
uration data and shadow registers is done in the same way.

The ROM is used to store the configuration data for
each FPGA of a base module. While startup the control
unit reads out the ROM and programs each FPGA with its
configuration data. Figure 3 shows the base module. Here
it is equipped with Xilinx 4025 FPGAs which are not
available yet. But in the same way it can be equipped with
Xilinx 4013 FPGAs.

An I/O module provides a connection to a host. It sup-
ports the parallel Sparc S-bus. With this module the host
works as /O preprocessor which offers an interface for
interaction to the user.

A RAM module with 4 MB static RAM can be plugged
in for the storage of global or local data. It can be plugged
in a bus module, so several modules have access to it in
the same way, or it can be connected directly to a base
module. Then this module has exclusive access to the
memory. Requests of other modules must be routed
through the FPGAs of the directly connected base module.
This is possible, but time consuming.

0000000000
0000000000
o B E S \&
T EE],
/ | 1 / | | |

Xilinx [ Xilinx Xilinx [~ Xilinx

4025 | ] 4025 pa 4025 | 4025 | A

\ NN

u u] —/—
O
O

==

Figure 3: The base module

Figure 4: A more complex structure



The bus module makes it possible to plug modules in a
bus oriented way together. With the possibility to have a
bus on each side of the base module this architecture can
be used to build multiprocessing systems with arbitrary
structure.

For the integration of standard processors they must be
located on their own modules which must meet the con-
nection conventions of the other modules. A standard
processor module for the Hyperstone 32 bit processor is
already included in the set of module types.

Even though this list of module types is sufficient for
many applications, there may be even more applications
which require other types of modules like networking
modules or DSP modules. One can think of any other type
of modules and surely the list of existing module types
will grow in the future.

With these modules arbitraty structures can be built.
The structure depends on the application which is proto-
typed. So a running system contains all modules needed,
but not more. That is important to reduce overhead and to
keep the price low. An example of a more complex struc-
ture is depicted in figure 4. This picture shows an architec-
ture in top view and in side view. As can be seen, the
architecture is built in three dimensions and consists of
four basic modules, a RAM module and an /O module.
On the right side is a tower of three basic modules which
are connected via three bus modules. On the left side is
another basic module with a local RAM module and an I/
O module. The gross amount of gates in this example is
about 400K. Thus it is an example which would be suffi-
cient for many applications.

One may assume that the left basic carries an applica-
tion specific software executing processor which works
with the RAM on the RAM module and which communi-
cates with software on a host for providing a user interface
via the /O module. The tower on the right side may carry
some ASICs.

3.2: Supporting software

A very important part of the prototyping environment is
the supporting software. The hardware is only the carrier
of an application but the software has to solve all synthesis
problems and management problems. Therefore different
tools are needed:

« The hardware of the application must be partitioned to
fit into the FPGAs of the architecture. The structure of the
particular system must be an input parameter of the parti-
tioning software. This tool was developed as a Phd work
at the Computer Research Center of the University of
Karlsruhe. [15]
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» The structure which fits best for an application must
be extracted from the specification. The architecture syn-
thesis is responsible for the extraction of the information
which module types an application requires and how they
must be plugged together to get the best resuits.

« If a netlist is partitioned and a path between two dif-
ferent partitions must be routed through FPGAs, then a
decision must be made, which of the possible ways the
path should go. This routing information must be inte-
grated in the programming of the FPGAs.

o The synthesis of the FPGA configuration files is
done with conventional logic synthesis tools.

« After the hardware/software partitioning, the resulting
behavioral hardware description must be synthesized via
existing high level synthesis tools.

* The debugging is the job of the hardware debugging
software. This software provides a user interface for the
readback of configuration data, for signal tracing and for
shadow register reading.

4: Results

The architecture is still in the development process.
This holds especially for the software tools. Thus, it is not
possible to give a full example for a running application.
But the partitioning software is yet implemented and the
design of the base module is ready, so it is possible to par-
tition applications for this architecture and look at the
results. We have mapped a VHDL description of a 16 bit
processor to a base module. The processor consists of
5887 gates, 482 of them are latches and 5405 are combina-
tional gates. Table 1 shows the results of the partitioning:

FPGA 1 | FPGA2 | FPGA 3 | FPGA 4
FPGA'1 | 336 58 0 67
FPGA2 | 58 229 30 0
FPGA3 | O 30 271 16
FPGA 4 | 67 0 16 476

Table 1: Partitioning of a 16 bit processor on a
base module.

The diagonal cells show the amount of CLBs used in
each FPGA. The other cells indicate the number of con-
nections between the two FPGAs that denote the row and
the column. The partitioning knows that the base module
carries four FPGAs, so it doesn’t try to push the total
application into less FPGAs in order to save one though
this would be possible. As can be seen it is easily possible
to map this application on a base module with a hardwired
interconnection structure.



5: Summary

In this paper we have presented a prototyping system
which is especially useful for, but not restricted to, hard-
ware/software codesign. In comparison to other environ-
ments it has the advantages that it is very flexible because
of its modular architecture; it supports the integration of
standard processors and the implementation of application
optimized processors on FPGAs and it provides a non lim-
ited gate capacity.

The debugging facilities exceed those of other environ-
ments because they include signal tracing, configuration
data readback and FPGA shadow register reading.

As an interesting side effect it is possible to change the
configuration of particular FPGAs dynamically at runtime.
This shows possibilities for further exploration and
encouragement of the architecture.
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